reciprocal observation - definition. What is reciprocal observation
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Reciprocal gamma; Reciprocal Gamma; Reciprocal Gamma function
  • Γ(''z'')}}}} in the [[complex plane]], plotted using [[domain coloring]].

Reciprocal construction         
LINGUISTIC STRUCTURE THAT MARKS A PARTICULAR KIND OF RELATIONSHIP BETWEEN TWO NOUN PHRASES
Реципрок; Reciprocal voice; Reciprocal (grammar)
A reciprocal construction (abbreviated ) is a grammatical pattern in which each of the participants occupies both the role of agent and patient with respect to the other. An example is the English sentence John and Mary criticized each other: John criticized Mary, and Mary criticized John.
Reciprocal Recording         
  • The former studio in August 2017
RECORDING STUDIO IN THE BALLARD NEIGHBORHOOD OF SEATTLE, WASHINGTON, UNITED STATES
Reciprocal Recordings
Reciprocal Recording was the name of a recording studio in the Ballard neighborhood of Seattle, Washington, United States that was founded in 1984 and officially closed in July 1991.
Bonilla observation         
FIRST SIGHTING OF UNIDENTIFIED FLYING OBJECTS
Jose Bonilla Observation; José Bonilla Observation
On August 12, 1883, the astronomer José Bonilla reported that he saw more than 300 dark, unidentified objects crossing before the Sun while observing sunspot activity at Zacatecas Observatory in Mexico. He was able to take several photographs, exposing wet plates at 1/100 second.

ويكيبيديا

Reciprocal gamma function

In mathematics, the reciprocal gamma function is the function

f ( z ) = 1 Γ ( z ) , {\displaystyle f(z)={\frac {1}{\Gamma (z)}},}

where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).

The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.

Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.